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Scaling limit of vicious walks and two-matrix model
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We consider the diffusion scaling limit of the one-dimensional vicious walker model of Fisher and derive a
system of nonintersecting Brownian motions. The spatial distributioN pfrticles is studied and it is de-
scribed by use of the probability density function of eigenvalue® sfN Gaussian random matrices. The
particle distribution depends on the ratio of the observation tinamd the time intervall in which the
nonintersecting condition is imposed. A is going on from 0 to 1, there occurs a transition of distribution,
which is identified with the transition observed in the two-matrix model of Pandey and Mehta. Despite of the
absence of matrix structure in the original vicious walker model, in the diffusion scaling limit, accumulation of
contact repulsive interactions realizes the correlated distribution of eigenvalues in the multimatrix model as the
particle distribution.
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[. INTRODUCTION found that its initial-configuration dependence can be gener-
ally described by using the Schur function and the well-
The vicious walker models, in which random walkers known properties of this function enable us to define the
walk without intersecting with any others in a given time nonintersecting Brownian motions in whicall particles
interval, were introduced by Michael Fisher and applicationsstart from a single positiorBecause the nonintersecting con-
of the models to various wetting and melting phenomendlition will be imposed for a given time interval, sdyall the
were described in his Boltzmann medal lectlif Recently, particles are immediately disunited from the initial point, and
using the standard one-to-one correspondence between walken they walk randomly keeping the nonintersecting condi-
and Young tableaux, Guttmaret al. [2] and Krattenthaler tion. We have studied the time dependence of the spatial
et al. [3] showed that exact formulas for total numbers ofdistribution of particle positions. We report in this paper that
one-dimensional vicious WalkS, some of which were Conjec_the pOSition distribution ofN nonintersecting Brownian mo-
tured in previous papefid,4—6, are derived following the tions can be identified with the distribution of eigenvalues of
theory of symmetric functions associated with Young dia-NXN complex Hermitian matrixd coupled to a real sym-
grams[7-9] or the representation theory of classical groupsmetric matrixA, in whichH andA are randomly chosen from
[10]. Important analogies between the ensembles of Youn§e Gaussian ensembles. Suctwa-matrix modeivas stud-
tableaux and those of Gaussian random matrices were ré&d by Pandey and Meh{&1,22, in which one parameter
ported by Johanssdi1], and then Baik12] and Nagao and Wwas introduced to control the coupling strength between two
Forrestef 13,14 studied the vicious walker models using the Matrices. We will show that the time dependence of our pro-
random matrix theory15,16|. cess can be expressed by the parameter dependence of
The purpose of the present paper is to demonstrate moféandey-Mehta’s two-matrix model.
explicit relations among the vicious walker model, the sym- Here we consider the probability density function Mf
metric function called the Schur function and the Gaussiari€al variablegx,, - - -,xy} with a real parametgg=0,
ensembles of random matrices by considering the diffusion

, .y P X - : a2
scaling limit of the one-dimensional vicious Walk_s. S_lnce Pa(Xy, - Xy)=Ce BEX; 12 H |Xj_Xk|B

each random walk converges to a Brownian motion in the 1<j<k=N

scaling limit, the limit process dfl vicious walkers will be a

system ofN nonintersecting Brownian motiof$7]. In order =Cexd — BW({x;})], @

to enumerate all possible nonintersecting paths of walkers ith
realized on a spatiotemporal plane, we use the so-callel)’!
Lindstram-Gessel-Viennot formulfl8-20, which leads us LN
to a useful determinantal expression for the transition prob- W _ 2

o : . : . : Xi})=% X5 — IN|X; — X/, 2
ability density of nonintersecting Brownian motions. We (tx5h 2 121 ! 1<j;k<N | ' d @

whereC is a normalization constant. It is known that Ej)
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N Brownian motions, in which all particles start from the from 2s;<2s,<---<2sy arrive at the positions & <2e,
origin and the nonintersecting condition is imposed in the<...<2ey at timeK. Then the probability that such vicious
time interval (0T], we will show that(i) at the very early walks with those fixed end points are realized in all possible
stage, i.e.t/T<1, the particle distribution is described by random walks started from the given initial positions, which
using GUE,(ii) as timet is going on, a transition from GUE s denoted aS/N({Rij}E=o;Rf2=2€j), is

to GOE is observed, andii) at the final stage=T the

particle distribution can be identified with GOE. As shown K N NN(K;{ej}HSj})

by the second equality of E@l), the Gaussian ensemble of VN({RK’}kzo;RK'ZZGj):T-

random matrices can be regarded as the thermodynamical

equilibrium of one-dimensional gas system wiltwo-  \ve also consider the probability

dimensiongl Coulomb repulsive potentidP) at the inverse

temperatureg3. Here it should be noted that the vicious walk- S K SK .S

ers on a lattice have only contact repulsive interactions to VN({RKJ}'(ZO):EIQZZ..QN V(R0 R =26y).

satisfy the nonintersecting condition. The global effective in-

teractions among walkers are accumulated by taking the dif- Consider a subset of the square latt&e

fusion scaling limit and as its result a long-ranged Coulomb
gas system is constructed. Suemergence of long-range

effects in macroscopic scales from systems having only shorfq the set, of all edges that connect the nearest-neighbor
ranged microscopic interactiongss found only at critical pairs of vertices inCy . The lattice Cx,&«) provides the
points in thermodynamical equilibrium systems, but it is aspatiotemporal plane and each walk of thé walker, j
typical phenomenon observed in a various interacting par=1 5 ... N, can be represented as a sequence of successive
ticle systems in far from equilibrium. . edges connecting vertic&=(2s;,0) andE;=(2e; ,K) on

In particular, in the limitT—c, that is, when the nonin- -t “yhich we call thelattice pathrunning froms; to E; . If
tersecting condition will be imposed forever, we can derive &, |attice paths share a common vertex, they are said to

system of.stochastic differential equati(_)ns for the Process iarsect. Under the vicious walk conditié®), what we con-
with the drift terms that act as the repulsive two-body forcesgiyer is a set of alN tuples ofnonintersecting pathf20].

proportional to the inverse of distances between particles. Dt 7(S—E) be the set of all lattice paths froi to E
other words, the scaling limit of vicious walks with— o and WO({Sj}]!\lzl_){Ej}JNzl) be the set of allN-tuples

can realize Dyson’s Brownian motion model@t2 [23]. It r{

Li={(x,y)eZ%:x+y=even, O<y=K},

mq,---,my) Of nonintersecting lattice paths, in whicin;
fins fromS; to Ej, j=1,2, - -,N. If we write the number of
elements in a setA as |A|, then Ny(K;{ej}|{sj})

is reasonable to obtain such a stochastic process from t
vicious walker model, since it is known that Dyson’s Brown-
ian motion model a3=2 can be mapped to the free fermion | ({S-}N H{EA},N )|
model[17,24. The transition from GUE to GOE is, how- ﬁ IJ_.Jal . _JGJ:1 IV h vE48_2

ever, first reported for vicious walkers with<c and ex- The Lindstron-Gessel-Viennot theorem givel 9

plained using the two-matrix model in the present paper. (see alsq1,6,14),

. Nn(K;{e}{sj}) =det < y<n(|m(S—E))]).
II. MODEL AND LINDSTRO M-GESSEL-VIENNOT . K . .
DETERMINANT Since| 7 (S— Ej)|:(K,2+Sk,ej), we have the following bi-

. . - , r}omial determinantal expressions:
One-dimensional vicious walks are defined as a subset o

simple random walks as follows. Let{RU}=,] V(R0 RY=2€))
=1,2,... N, be theN independent symmetric simple ran-
dom walks onZz={---,—-2,—1,0,1,2--} started fromN
distinct positions, 8, <2s,<---<2sy, sjeZ. That is,

K
= —NK .
2 de&s]'ng( K/2+Sk_ej>)
RO-1 or RI+1, @

Ry=2s;, and R} .
and

k1~
forj=1,2,...N,k=0,1,2 .. .. Fix thetime intervalK as a _

positive even number. The total number of walks & 2all VN RIK-o)

of which are assumed to be realized with equal probability

2~ NK We consider a subset of walks such that any of walk- Nk Y det_ (
ers does not meet other walkers up to tikhdn other words, e1<e,< - <ey ShksN
the condition

K/2+ Sk_ej '

Sl 52 o .. SN =
Ry <R’< <R k=12,...K ®) Ill. SCALING LIMIT OF VICIOUS WALKS

is imposed. Such a subset of walks is called the vicious Recently Krattenthaleet al.[3] evaluated the asymptotes
walks (up to timeK) [1,4]. Let Ny(K;{e;}|{s;}) be the total ~ of Eq.(5) for largeK in the two special initial configurations,
number of the vicious walks, in which théwalkers starting (i) s;=j—1 and(ii) s;=2(j—1), as
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VNURIHC o) =anby({siH K NN"DA 14+ 0(1/K)],

(6)
where
N/2
Y mNIT (2j—-2)r if N=even
an= o (N—1)/2
(2N*+1) ) (N=D1)/4 _1:[1 (2j—1)! if N=odd,
| )
and
bn({i—1)=1, by[{2(j—1)}]=2"N"DZ (g)
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det < =n(qU ™ DOKEN=R))

det < =n(qU~DN=R)

S)\(liq=q21 T quil):

Appropriate application of the formula of Vandermonde de-
terminant(10) gives the product form

- - . q}\j*)\k+k*j_1
V1) == 1A

[1

1=<j<k=N

s\(19,9%, ... e

Taking the limitg— 1, we have the formula

N Nhk— ]
k=]

11

1=<j<k=<N

s\(1,1,...,)

(11)

We found that their result can be immediately generalizedrhe Schur function is a character of the irreducible represen-

as
bu[{s(j—1)}]=s"N"D"
for sj=s(j—1),s=1,2,3; - -. This observation suggests that

we can take the scaling limit— o, where the time interval
KoL and the initial spacing of walkersx /L.

A. Schur function

tation specified by. of the groupGL(V) and Eq.(11) gives
the dimension of the representation.

B. Diffusion scaling limit
We set

JL

&=>"Yi: (12)

In order to describe the scaling limit of the vicious walks, for j=1,2,... N, and take the limitL—c. Since in this

the symmetric function called the Schur function is useful.| it aach random wallRS converges to a Brownian motion
. - k 1
zigi;\:]e[?lvleqssvn;iﬁ fv\}i“eb;uEgggnﬁrel}zllvpropertles of SChu\Evhose distribution function solves the diffusion equation,
A partition )\’_()\ N Ay is a nonincreasing series this scaling limit is especially callediffusion scaling limit
- 1:0N2,° " "y AN H . . . .
of nonnegative integersh;=\,=---=xy=0. Let V be First we remark that, for each strictly increasing series of

the N-dimensional complex vector space. Then the Schul{gtegrir;(yl)?é? )<yN§ ?\;\;eca‘;]yg:zsgsrg dsgnesset?ifnm-
function s, (z;,- - -,z\) associated with\ is a function of 9 y 1Y) ety 9 y 9

(z41,---,zy) €V defined by

§(Y)=yn-j+1—(N=j), j=12,...N. (13
detlsj,ksN(Z}\k+N7k

det—j k=n(z]'"9)

)

Then we can prove that, for givan>0, x;<X,<--- <Xy,
andy;<y,<---<yy,

(JE

2

9

S\(Z1,- -, 2Zn) =

Let A\({z}) be the numerator of Eq9), which is anN
X N determinant. If we ser) =1z, for 1=<I;<I,=<N, then
A\({z}) =0, since thel th row is equal to thd,th row.
Then it is divisible by each of the diﬁerenC@l—z,Z,l
<I,<I,=N, and hence by their produllt; - ; -y <n(z; = Z,)-
This product of all differences is known as the Vandermonde
determinant, which is nothing but the denominator of Eq.

9);

lim

L—o

N
JOx;/2 oVIx/2
) VN({Rk % }kLOIRLtX] :\/Eyi)

1 2

N /t)

:(ZWt)iledEtlsj,ksN

= (2mt) Ny (et et

N
xexp< _2i 2, Oy [({ei"h, (14
ti=1

Ao({z)))=det<j k=n(z)'"")

]

= Il (z-2z). 0
1=<j<k=N

wheresg)(2;,- - -,2y) is the Schur function associated with
Therefore it is concluded that the ratio of two determinantsé(y), defined by Eq(9) with A=¢£(y), and
A, /A is a polynomial inzy,---,zy. Moreover, it can be
readily seen from Eq9) that the Schur function is a homo-
geneous polynomial of degr%\‘zl)\j inzy, --,zy.
Let g be a complex variable and sgt= g'~tin Eq. (9).
Then we have

hN({Zj})EdeEsj,ksN(Zrl) =(—1)NNTD2A({z})

(15
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The proof is given as follows. Setting E@L2), we apply tions Let T>0 and we consider theN nonintersecting
Stirling’s formula to the right-hand sidéRHS) of Eq. (4) Brownian motions in the time interval (D]. Set
multiplied by (VL/2)N,

. Lt NGDh= [ atusiyalin.
JC y1<- <y
lim 2NLt(7> det<jk=n| | Lt \/E(Xk_yj)
L—ee ?"'T For Oss<t<T, x3<---<Xp,¥1<---<ypn, the transi-
i tion probability density from the configuratidix;} at times
Lt to {y;} attis given by
=det; r=n| liM 2'-‘(—) Lt L(X,—V;
b<j k=N m ?+ M s kbt _}):fN(t—s;{yj}|{xj})NN(T—t;{yj})
: ISP NW(T=s:]) ’
) (18)
=det< k=n e~ ey (16)
27t since the numerator in RHS gives the nonintersecting prob-

ability for (0,T] specified with the configurations;} and
1y;} at timess andt, respectively, and the denominator gives
the probability only specified witkix;} ats, where we have
used the Markov property of the process. The temporal in-
homogeneity is obvious, since RHS depends not driyg

but alsoT—s andT—t.

which gives the first equality of Eq14). For the second
equality, we rewrite Eq(16) as

(2t) —Ni2g - (¢ +y?) 2t det ;e (e .

The determinant is written as

d XY Ity — det < =n((€"/)Yn-k+1) C. t—e asymptote of Ny (t;{X;})
Ch<jk=n(€T)= . Xj ltyN—k It should be noted that, sind€y(t;{x;}) is the integral of
dEtlSJ ksN((e ) ) . U s
' fan(t;{y;H{x;}) over all possible end positiory;}, it is the
Xhy({ei'). probability thatN Brownian motions starting fronfx;} do

) o . not intersect up to timé Before studying the stochastic pro-
Using Eq.(13) and the definition of Schur functiof9), the  cess defined by the transition probability dengitg), here
second equa!lty of Eq14) is obtained. _ _ we assum¢x|EEJN:1|xj|<oc and evaluate the—o asymp-

We consider the rescaled one-dimensional lattiC&qte of A (t;{x;}). In order to do that, the second expression
ZI(\LI2), where the unit length is gL, and letR denote  of fy(t;{y;}{x;}) in (17) will be useful,
the symmetric simple random walk starting from on 2
Z/(\L/2). Then Eq.(14) implies that e

(L) AL mp Nt 1) = ———hy ({5511 My
; DXL X —f (- N (2mt) Y1so YN
LIlm VNER o R LYy +dyi D = fn(ti{y;H{xHd .

2
ng(y)(exllt' . 'eXN/t)e_Eyj /2t_

Here we can give two expressions fig(t;{y;}/{x;}),

fn(t{yHl{xh=(2at) N2

By Eg. (11), (13), and(15),

limsgy, (et e =s,,(1,1,...,0

1 ) t—o
expl — 5 (X Yj)

— (27Tt)7N/28§(y)(exllt,elet, L ,eXN /t)

1 N
I 24,2
xex;{ T 121 (x2+y?)

X det<j k=N

=hy(y/ II  (k=})
1<j<k=N

hy(fes’y).  and

an lim (MO Ehy ({1 = hn({xg1).
t—oo

Since the vicious walkers are defined by imposing theWe define
nonintersecting conditiof3) up to a given timeK, the pro-
cess depends on the choice §f That is, the process is
temporally inhomogeneoushis feature should be inherited bu({x;})=hn({x;})/ T .
in the process obtained in the diffusion scaling limit. Since 1<j<k=N
each random walk converges to a Brownian motion in the
diffusion scaling limit, the limit process of th#l vicious  Note that this definition oby({x}) is consistent with Eq8).
walkers can be called thld nonintersecting Brownian mo- Then we have

011105-4
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bn({X})
(27)N2N!

X[1+0(1/)]

Nu(ti{x ) =t~N72 f dYy e 22|hy({y;))

bn({x}) 2
_+—N(N-1)/4 j N, | o= Su?/2 ,
=t 2 VNI d“ue=4i"hy({u;})|

X[1+O(1h)],

ast tends to infinity, where we have used the facts that with

the absolute values the product of differengles({y;})| is
invariant under permutation of;, and uj=yj/\/f. The last
integral is the special case/€ 1/2 anda=1/2) of

JdNu gavu 11 |uk—uj|27
1<j<k=N
N T(1+jy)
= (27)N2(2g) N7 (N-1)+1]/2 ,
(2m)N4 2a) 1 ¥y
(19

which is found in Mehtg15] [Eq. (17.6.7 on page 354
whose proof was given ifi25] by use of Selberg’s integral
[26]. Here I'(x) is the Gamma function with the values
ML, M (1+j/2)=2"NN"D2([7/2)NNlay  and  T'(3/2)
=J/m/2 and, wherea is given by Eq.(7). Then we have

Mt {xih) =t~ 2" 2ayby({xH[1+0(11)] (20)

with

1
dn=7N(N-1), (21

ast tends to infinity, whergpy is known as the critical ex-
ponent of survival probability of vicious walkef&,4,27,28§.
Since

£ N2 20 ({xi}) = (L)~ "Noy({VLx;/2}),

(20) suggests that the resulf) with (7) and (8) of Krat-
tenthaleret al. shall be generalized for arbitrary initial posi-
tions of vicious walkers on the lattice.

IV. GAUSSIAN RANDOM MATRIX ENSEMBLES AND
DYSON’'S BROWNIAN MOTIONS

In this section we study two special choicesTof T=t

and T—oo. We show that there is an interesting correspon-

dence between these choices Dfand the Gaussian en-

PHYSICAL REVIEW E 66, 011105 (2002

A. T=t case and GOE

Since the first expression in Eq.(17) gives
lim,_ofn(t:{y;H{x;}) =TT}L 8(x; —y;) with Dirac’s & func-
tions, Ny(0;{x;})=1 for any{x;}. Then settindgl =t makes
(18) depend only ort—s. Sets=0 and use the second ex-
pression in Eq(17) for fy(t;{y;}{x;}) and Ny(t;{x;}). By
virtue of the Schur functior{11), for t>0 and|x|<1, we
have

(LY H{xH = (27t) “N2hy({ei ) sgyy (1, .. .,

x e >V2[1+0(|x))]

t—N/2

= o D

exk/t_exj It

L TX[H' O([x)]

and

Ni(t{xh)=(270) Moy ({e% “})L B

Xsey (L, ... De” N 2[140(|X])]

tN(N_l)/4 eXk/t_er It

) m1§j<ksN T[1+O(|x|)],

where the integra(19) was used and

CN:

ON(N-2)/2
N2 :(

N -1
2N T F(jIZ)) .
=1

ay
Then Eq.(18) gives
2
an(0£0};t{y;h =cyt ™ Ne i hy({y;})

for Vi<---<YnN with

It means that

g (0,40} t,{y; ) =N1gS 5 {yi}:t)

for y,<---<yy, where

C 1 N
g8 5Ly 0?) =N—'\;02§Nexp( by le yf) hav(lyih)

(22)

sembles of random matrices. In order to see it we consider

the limit |x|—0, Where|x|EEjN:1|xj|. It will be shown that is the probability density function of eigenvalugs} of ran-

the second expression §§(t;{y;}/{x;}) in Eq.(17) is useful ~dom matrices in the Gaussian orthogonal ensemble with
for taking this limit. variances? [15].

011105-5
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B. T—« limit and GUE C. Dyson’s Brownian motions
Let In the limit T—o we have obtained the compact expres-
o sion (23) for any x;<---<xy andy;<---<yy. In this
DN(S,{XJ}?'[,{YJ})ET“m on(s Xkt fysh). section, we show that a system of stochastic differential

equations can be explicitly derived for E@3). Using it we

By use of Eq.(20) we can determine the explicit form for will explain why we have the GUE distribution.

any initial configuratiorx;<x,<<--- <Xy in this case as Let
N
dy;h 1= _
PO DLy = et Gop NG, 29 BUDGD= 2 g O k12N

wherehy is given by Eq(15). Moreover, if we take the limit It is easy to verify that

|x|—0, we have

, Ed({x)= ln h({x,}). @7
P00}t {y, ) =it~ e 2h(fy % (24) ‘ "
with fork=1,2,... N, and
N

N -1 d 5
glf\‘:_ and C,’\‘: ( (27T)N/2H F(J)) l(Zl (9_XkEk({X]})+[Ek({Xj})] =0. (28)
2 L . =

Using these equalities, we can prove tha(0,{x;};t,{y;})

That is, we have the identity solves the equation

pn(0,{0};t,{y;H) =Nt gg 5({yikit),

fory;<---<yyn, Where

u(ti{x;H)= Au(t{x}>+2 Ed({x}) u(t{x})
(29

’ N
Cn 1
GUE({yJ} o2 :_U ZéNexp( — 2_ E y]) N({yi})z WhereA=EE=1o72./<9xﬁ. The p.r001.c is the following. Fir;t we
remark that the first expression in E47) states thaf is a
(25 finite summation of the products of Gaussian kernels and

s the probability density function of eigenvalugs} of ran- thus it satisfies the diffusion equati¢pdl]. Therefore,

dom matrices in the Gaussian unitary ensemble with vari- {yih
2 — i =5
anceo? [15]. 7 PROIXGELLYH =5 hn({X;})

In the caseT— o, the nonintersecting condition will be
Then we can find that, §E,({x;})} satisfy the equations

AT (LY XD

imposed forever, while in the case=t, there will be no
condition in the future.The distributions of particles at

present depend on the condition in the future. N
By generalizing the calculation, which we did in the case > Ed{x: (t:{yH{x;
T=t, for arbitraryT and comparing the result with E(R4), = t } {X }) X Ity
we have N
-3 | ] |
ONOLOBLAYD L, MT-LlYD oo & [ ntgn] [ NED)
pn(0fO}t{y;H N hn({yih) (30)
fory;<---<yy, with Eq. (21) and and
N i N
- CN N/2 F(J) J 1 1 (7 1
CN=— =T s D =—5 —
"ok i=1I(112) kZl Ek({xj})tﬂk hn({x;}) 2 kZl ax2 hn({x})”

31
WhenN=2, we can consider the process of one variable (=Y
=y,—Yy;. In this casey, andp, define theBrownian mean-  Equation(29) holds with u(t;{x 1) =pn(04x; 1ty ). Itis
der and theBessel procesgespectively, both of which are easy to see that EQ30) is satisfied if Eq(27) holds for any
stochastic processes well studied in probability thd@§].  k=1,2,... N. Moreover, using E¢27), we can reduce Eq.
The equality(26) can be regarded as the multivariable gen-(31) to Eqg.(28). Then the proof is completed.
eralization of Imhof’s relatior{30] between the Brownian The above result implies that the process defined in the
meander and the Bessel process. limit T—o is the system ofN particles with positions
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x1(1),%,(1), - - -,x\(t) at timet on the real axis, whose time For a fixedT<c, the above results are summarized as
evolution is governed by the stochastic differential equationgollows. Consider the one-dimensiorfélBrownian motions
all starting from the origin at timé=0. We impose the non-
dx (1) =Ex({X;(t)})dt+dBy(t), (32 intersecting condition for the time interval ([0, As the ratio
N ) t/T—0, the particle distribution is asymptotically described
k=12, --,N, where{B(t)}-, are the independent stan- py GUE. On the other hand, &¢ T, it can be identified with
dard Brownian motions GOE. This implies that as timeis going on from 0 toT,
B,(0)=0, (Bj(t)>=0, there occurs a transition of distribution from GUE to GOE.

In this section, we study this transition.
([Bj(t)—Bj(s)1[ Bk(t) —Bk(s)]) =t —s| i«

GUE is the ensemble of complex Hermitian matrices and
GOE is that of real symmetric matrices. The degrees of free-
for anyt,s>0,,k=1,2, . .. N. Because of the scaling prop- dom are, when the matrix sizes ae N? andN(N+1)/2,
erty of Brownian motion,\/aBj(t) is equal toB;(at) in dis- respect|vgly. If we change the_varlables from these indepen-
tribution for arbitrarya>0. Then, if we set=2t' and write  dent matrix elements to the eigenvalues and other mutually
X (1) =% ('), Eq. (32) is the a—0,8=2 case of the equa- mdependgnt variables, an.d then if we integrate the distribu-
tigns KA = ! tion functions over all variables other than eigenvalues, we
’ will have the probability density functions fod real eigen-
3 values as Egq925) and(22) [15].
dx(t')=—B—W[{X;(t")}]dt’ + J2dB(t'), (33 Although the vicious walker model has no matrix struc-
Xy ture at all, here we show that its diffusion scaling limit, non-
intersecting Brownian motions, can be regarded as the reduc-

k=12,... N, with tion of a one-parameter family of ensembles of matrix
n ~2 structures to a variable space of eigenvalues. The “hidden
@ ~ structure” is not a single matrix but a two-matrix model, in
We({x = IN(X,—X;). X " S . ’
({ ih= aE jgksn (X=x)) which a complex Hermitian matrix is coupled with a real
_ o ~ symmetric matrix.
Whena=1, Eq.(33) is known as the stochastic differential  |n the first section we will derive the two-matrix model

equations for the Dyson Brownian motions at the inversérom the nonintersecting Brownian motions and the transi-
temperature B and the stationary distribution tion from GUE to GOE will be discussed in the second sec-
xex — BWX( {}1})] [23]. If =0, the factor exp(,gazizlz) tion. In the third section we will show that the obtained two-
will be replaced by exp(Ex2/4t ) for finite t’ and thus matrix model can be identified with the two-matrix model of
Pandey and Mehtf21,22 by appropriate scale transforma-

when t'=¢?/8 we may have the Gaussian distribution :
tion of matrix elements.

xex — (840 Tx Thy({x;})~. SettingB=2 gives the form

(25). . _

It should be noted that the system of diffusion equations ~ A. From vicious walker model to two-matrix model
describing the Dyson Brownian motions wi=2 can be The generalized Imhof relatiof26) with Eq. (24) gives
mapped to the free fermion moddl7,24.

For generall <<, we will have the stochastic differential _sy2
equations gL(O,{O};t,{yj})oce ZyJ/ZthN({yj})f dNZSgr{hN({Zj})]

dxi(t)=Ex({x;()})dt+dBy(t),

Xdet<j k=N (34)

F{ 1
exp — 5y Vi~ 20°

where sgnk) =x/|x|. The RHS is rewritten as

for k=1,2,... N, with

Ex({xh)= |nNN(T B{xj}).

1
hN({yj})J dNZSQ'{hN({ZJ})]detlsj,ksN exr{ - 2_tyJ2
V. TWO-MATRIX MODEL
In Sec. Ill we have constructed a system of nonintersect- 1 (Vi —2)?
ing Brownian motions in one dimension as the diffusion 2(T-1) YiT &
scaling limit of vicious walks. The obtained transition prob-
ability density (18) is temporally inhomogeneous and the -h . de sarfh 1) e~SZ/eT
particle distribution depends not only the observation time n(dyih) 2 sgihn(iz}h)] J

t—s but also on the time intervdl, in which nonintersecting T 2
e . t

condition is imposed. In the case that all particles start from X det < ken ex;{ - —(yj_ _Zk) ”

the origin at times=0, it was shown in Sec. IV thatj) if 2t(T—1) T

T=t, it can be identified with the eigenvalue distribution of

random matrices in GOE, ar{d) if T—c, it becomes GUE. Setting ¢/T)z;=4a;,j=1,2,... N, we have

011105-7
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Gl 0h LAy =h(iyi}) | aasathy(iah]

N
T
Xex;{ -— 2 ajz)

2t° j=1

xXdet<j k<n

-z e’
exp — m(yj_ak)

Consider an ensemble dfX N real symmetric matrice§A}

with an integration measure

1<j<k=N
Let{a;,a,, - -,ay} be the eigenvalues of the matixand
{P1.P2, - ,Pnn-1)2 be other mutually independent vari-
ables. Then

N N(N-1)/2

dA:J({aj}a{pj})J];[l da kl;[l dpx,

whereJ({a;},{p;}) is the Jacobian

d(A11,A12, - . . Ann) |
dag, ... an,P1, - - PNN-1)2)]|

J{a}ipih) =
It is known that we can write

J{ah i) =Ih{a b f({pid),

wheref({py}) is independent o#;’s [15]. Therefore, for any

function G({a;}) of {a;, ... ,ay}, we have the identity

N
| aa atap=c| I1 dajnuapiciap @0

with
N(N-1)/2

CIJ kl:[l dpf({pj})-

Set

B 1 T o 2
SaD =y apreotm@iens ~2e 2 9

|

xdet<j k=n

T 2
exp — m(yj_ak)

Then using formuld36), (35) becomes

} . (39

PHYSICAL REVIEW E 66, 011105 (2002

GO0} LAy hw(tyh) | AR

N
T
xexp( - > ajz)

2t (1
e = At I
(37

Next we use the following integral formul@2-34; for
NXN Hermitian matricesA and B having eigenvalues
{a;, ...,ay} and{bq, ... by}, respectively, and for any
constanty,

Xdet<j k<n

1
n({ajh)hn({bj})
X det—j =n[exp(¥(a;—by)?)],

J dU exf ytr(A—UTBU)?] ;

where the integral is taken over the group of unitary matrices
U. Then Eq.(37) can be written as

;
gl0f0}t Ay, =hn({y? [ au [ dAexp( - A’

X exp( - Ltr(UTY U—A)2> (38
2t(T—t) ’

whereY is the N XN diagonal matrix such that =y &y .
SinceU is a unitary matrixH=UTY U is anNxN complex
Hermitian matrix. Then the integrand of E(8) can be
regarded as a weight for two matricelsand A given as

exf —tr(yuyH?— yyaHA+ yaA?%) ]
with

T T T
YH 2t(T—1)’ YHA H(T—1)’ YA 2t2(T—t)'
(39

Consider an ensemble &fX N complex Hermitian ma-
trices{H} with the integration measure

N 1<j<k=N

1<j<ks j

For each complex Hermitian matri, let{y,, ... yn} be a
set of eigenvalues and be theNX N unitary matrix such
thatH=U'Y U with Y =y;8;c. Then it is known that the
integration measurdH can be factorized into the product of
the Haar measure for unitary matricgsl and an integration
measure for eigenvalug$5s,16,

N
dHocdU X hN({yj})ZH1 dy; .
u

011105-8
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Now we introduce a two-matrix model, which consists of an T ) .
NXN real symmetric matrixd and anNx N complex Her-  In(0{0}t,{y;})chn({y;}) f dUun(H)
mitian matrixH, with a probability density function

Re(H;,) 12
1 , , th({yj})zf du exp( -> {M
MN(H,A):Z_NGXIX_U[VHH — YHaHA+ 72A%)]. Ik 207Re
V12
Here vy, Yua,ya are given as Eq39) andZy is the parti- + M ) , (40)
tion function of the two-matrix model, 20,2m

whereH=U'Y U and
ZszdHfdAexp[—tr(yHHz—yHAHA+yAA2)].

t
Then the relation TRt Ulzm:t( 1- f)- (41)
T . 2 t Now the transition from GUE to GOE is explicitly repre-
040}t {yi})=h i fduf dAun(UTYUA plicitly rep
ON(O0RL ;1) hn(iy;)) a ) sented by the time-dependent varian¢é$). With a fixed

finite T, if 0<t<T, o&.=t=0%,. Then the real and imagi-
nary parts of complex Hermitian matrix elements are equally
distributed as in GUE. While3, increases linearly i, o2,
increases in timéonly up to timet=T/2 and then decreases

Consider the Gaussian ensembles of real symmetric man time. At time t=T, ¢2,=0, which implies that the
trices{A} and complex Hermitian matricg$i} with sizesN  imaginary parts of matrix elements are zeros with probability
with the probability density functions one. Then the distribution is identified with GOE.

is established.

B. Transition from GUE to GOE

C. Pandey-Mehta’s two-matrix model

1
VN(A):CA EX% - —2tI’A2
20 As an interpolation between GUE and GOE, Pandey and

Mehta introduced a family of Gaussian ensembles of Hermit-

and ian matricesiH} with one parametex €[0,1] [21,22,
1 2

~ _ _ 2 [Re(Hjy) ]

oo 5 e - [T
respectively, where Im(H:.)12

N [Im(Hj)] , 42
2 t 4v2a?
oi=—, oi=t|1-=
AT T H T/
where
and Cp=2"N%(map) N, Cy=2"N%mof) . Then 02={2(1+ a?)}
consider the convolution
and

MN(H)ZJ dAvn(A)n(H=A). Con=2~N2q~NN=D12( 2 1)2) ~N2,

Since, for =j,k=N, Set
K= \—— (43
with i=~—1, and T
Re(Aj)=Aj, Im(Aj)=0, Then, it is easy to see that, if
the convolution is also Gaussian distribution in the form WPe1— . (44)
N [Re(Hj)1  [Im(H)1?
H)ccexpg — + . i
mn(H) I{ % {Z(Uﬁﬁaf\) 207 the equality

Then Eq.(38) gives kN n(kH) = uM(H, @) (45

011105-9
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is established.
For an even integeX and an antisymmetribl X N matrix
B:(bjk) we pUt

1
Pfi<j<k=n(bji) = NI2)T > SN o)by(1)0(2)

XDBg@yo(4) - - - Do(n—1)o(N) 5

where the summation is extended over all permutatiomsg
(1,2,...N) with restriction o(2k—1)<o(2k), k
=1,2,...N/2. This expression is known as tRéaffian[20].

Pandey and Mehta showed that the probability density func
tion of eigenvaluegy;} of the complex Hermitian matrices,

which are distributed following Eq42), is given by

1 N
EW{y;},a):cN(a)exp[ —3(+ad 2 y,—z}
Xhy(yj ) Pli<j<ken(Fiw), (46)

where, setting

1—a?\ % (x 1—a*

f(x)= f exp — Z|dy,

()('n'az) OF{ 4a2y)y
if N is even,Fj=f(y;—vyd),j,k=1,2,... N, and if N is
odd We use above and in addltl(ﬁ] Ni1= FNHN 1,
.N,Fniins1=0, and Cy(a) 1=2%"21
2)N(N 1)/4(1+ 2) N(N+l)/4HN F(1+J/2) [21,22
Then the relation40) and the equallt)(45) with (43) and

(44) imply the expression

gR(040};t Ly }) =y TNN- D4 —N2 £y 1)

1 N
R 2
xexp( o J_Zl y])

X Pflsj<ksN[‘|Ejk(T_ta{yl})]a (47)

where
N if N iseven
N={N+1 if N isodd,
and
( 2 v
Zed 2N i 1<) k=N
Jr | 24t
Fi(t{yh)=4 1 if 1<j<Nk=N+1
-1 if j=N+1,1<k=<N
L0 if j=k=N+1,
with

X )
Erf(x)= | due™"".
0
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In order to derive Eq(46), Pandey and Mehta performed
integration over alternative variables and then used the
theory of Pfaffian15,21,23. In Appendix, we will give the
integration versionof Okada’s minor-summation formula
[35]. It should be noted that using it EGI7) can be readily
obtained from Eq(34) and this derivation provides another
proof of the equality(45).

VI. CONCLUDING REMARKS

In the present paper we performed the diffusion scaling
fimit of vicious walker model in one dimension and con-
structed the nonintersecting Brownian motions for any finite
numberN of particles all starting from the origin. There the
Schur function plays an important role to represent the tran-
sition probability density. We have shown that the spatial
distribution of particles depends not only the observation
time t but also on the time interval in which the noninter-
secting condition is imposed, and it can be described by use
of the probability density function of eigenvalues X N
random matrices in Gaussian ensembles. It was shown that
the particle distribution depends on the ratfd and a tran-
sition from GUE distribution to GOE distribution occurs in
its time development. Such a transition between different
ensembles of random matrices had been studied in the two-
matrix model by Pandey and Mehta, in which a parameter
was introduced and a one-parameter family of random ma-
trix ensembles was considered. The present work showed
that the scaling limit of vicious walk model realizes such a
two-matrix model as a stochastic process, in such a way that
the parametew is continuously changed following E(44)
as the system is developing in tinheip to T.

In the present paper, since we have considered only the
transition probability density between two different times, a
two-matrix model was analyzed. As briefly reported 3],
however, multitime correlations among particles at interme-
diate times between=0 andt=T can be identified with
intermatrix correlations in a multimatrix model. The corre-
sponding multimatrix model for calculating-intermediate-
time correlation functions is a version of Nagaolsl 1)
matrix model, where one real symmetric matrix is combined
at the end of a chain d¥l complex Hermitian matricel37].

This observation implies that the diffusion scaling limit of
the vicious walker model is mathematically identified with a
matrix chain, which is set along the time axis. The time
development from GUE to GOE in the process can be then
regarded as appearance ofedye effectas the observation
time t on the time axis is approaching to the end pdint
=T in this chain structure. Further study on the relations
between multimatrix models and nonequilibrium interacting
particle systems is desired.
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APPENDIX: INTEGRATION VERSION OF OKADA'S
MINOR-SUMMATION FORMULA d(ag, ..., a)= > det < k<[2(aj,by)]

1sb;<by<.---<b,=m
Assume En=m and letz(j,k),1<j<n,l<k=sm, be
indeterminates andZ(z(j,k)) be the nxXm matrix with  for r=1,2,... m. Okada proved the following equalities
(j,k)-elementz(j,k). We consider the sum of all minors @&f  known as theminor-summation formuld35]; if r is odd,

with a given sizer. That is, we define then
|
0 d(ay) d(ay) o d(ay)
—d(ay) 0 da;,a;) -+ d(a,a)
d(ay, ... a)=Pfl —d(az) —d(a;,az) 0 - d(ag,a) |:
_d(ar) _d(aliar) _d(aZyar) e 0

if r is even, then

0 d(a;,a;) d(aj,az) --- d(a;,a)

—d(a;,ay) 0 d(a,az) --- d(az.a,)

d(al,-~~,ar)=Pf _d(al,ag) —d(az,a3) 0 d(aS,ar)
_d(alvar) _d(aZvar) _d(a3!ar) 0

Now we give the integration version of Okada’s formula.  The proof is the following. We write the integral in left-
Let z(x,y) be a square integrable continuous function of realhand side of Eq(Al) as a limit of summation
variablesx,y. Then

dydet < v<nlZ(X; Y1) ]
| dPydet worl 2%y J—w<yl<.~<yn<x yeleh<j il 2% Y

=Pf<j k=il Fi({xD)], (A1) = lim

f d"ydet < x<nl Z(X;,Yi)]
M—ood —M2sy <---<y,<M/2

where
- - = lim lim &" det— niz[x;,y(b1}
_[n if n iseven Mes 1sb1<.__<szgm(M'5) fi<j k=niZ[Xj. (b1}
n+1 if n isodd,
d wherem(M, 8§) =[ M/ 8], the greatest integer not greater than
an M/ &8, and
10X 4 %) if 1<j<ksn
—l(x;, %) i 1<k<j<n J(b)= M—6 | M=o M
. . m(M,é8)—1 m(M,85—-1 2
ij({X|})= 1,(%}) if 1<jsnk=n+1
—1,(Xg) if j=n+1,1<ksn Let
0 if 1<j=k=n+1,
with A= > 2x.y(by)],

1<b;=m(M,d)

Iz(xj)=£;2(xj y)dy,

d(Xj ,X) =
1=<b;<by=m(M,s)

2[x;,.,y(bp]  2x;,9(by)]

0030 g3 % y(0)] 2% (by)]
2xyD) Z040y2)| P2 set

I Z(Xj 1Xk) = f
TRSY1<Y2s®
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(d(x;,x) if 1<j<k=n
—d(x;,x) if l=<k<j=n
Sik({xih) =1 d(x;) if 1<j<nk=n+1
—d(x;) if j=n+1,1<k=n
L 0 if 1<j=k=n+1.

Then Okada’s formula gives
| drydet o) 205 5]
—oe<y < <y

= lim lim 8"Pfy < <g=al Sic({x D).
M —o5—0

(A2)

Since the Pfaffian in EJA2) is a finite summation ofi/2
products ofa(xj ,X)'s if nis even, and it is a finite summa-
tion of (n—1)/2 products ofd(x; ,x,)’s multiplied by d(x;)
if nis odd, we may have

f d"y det<j k=nlZ(X;},Yi)]
—e<yy< s <Yp<

=Pfi—jk=n( lim lim 5209 s ({x})),
M —0005—0

PHYSICAL REVIEW E 66, 011105 (2002

where

a(j,k)=2 for 1sj<k=n,

a(j,n+1)=1 for 1

Sincez(x,y) is assumed to be square integrable and continu-
ous,

lim 1im 6Sj, 4 1({x1}) =1,(x;),
M—25—0

lim 1im &S, (1) =1(%; ,X),
M—05—0

for 1=<j,k=n. Then the proof is completed.
By elementary calculation we can show that
1(x)=1,

Erf( 2\t )

for z(x,y)=1/2mte” *V*2 Applying Eq. (A1) with n
=N, the expressiond7) is obtained from Eq(34).
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