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Scaling limit of vicious walks and two-matrix model
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We consider the diffusion scaling limit of the one-dimensional vicious walker model of Fisher and derive a
system of nonintersecting Brownian motions. The spatial distribution ofN particles is studied and it is de-
scribed by use of the probability density function of eigenvalues ofN3N Gaussian random matrices. The
particle distribution depends on the ratio of the observation timet and the time intervalT in which the
nonintersecting condition is imposed. Ast/T is going on from 0 to 1, there occurs a transition of distribution,
which is identified with the transition observed in the two-matrix model of Pandey and Mehta. Despite of the
absence of matrix structure in the original vicious walker model, in the diffusion scaling limit, accumulation of
contact repulsive interactions realizes the correlated distribution of eigenvalues in the multimatrix model as the
particle distribution.
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I. INTRODUCTION

The vicious walker models, in which random walke
walk without intersecting with any others in a given tim
interval, were introduced by Michael Fisher and applicatio
of the models to various wetting and melting phenome
were described in his Boltzmann medal lecture@1#. Recently,
using the standard one-to-one correspondence between w
and Young tableaux, Guttmannet al. @2# and Krattenthaler
et al. @3# showed that exact formulas for total numbers
one-dimensional vicious walks, some of which were conj
tured in previous papers@1,4–6#, are derived following the
theory of symmetric functions associated with Young d
grams@7–9# or the representation theory of classical grou
@10#. Important analogies between the ensembles of Yo
tableaux and those of Gaussian random matrices were
ported by Johansson@11#, and then Baik@12# and Nagao and
Forrester@13,14# studied the vicious walker models using th
random matrix theory@15,16#.

The purpose of the present paper is to demonstrate m
explicit relations among the vicious walker model, the sy
metric function called the Schur function and the Gauss
ensembles of random matrices by considering the diffus
scaling limit of the one-dimensional vicious walks. Sin
each random walk converges to a Brownian motion in
scaling limit, the limit process ofN vicious walkers will be a
system ofN nonintersecting Brownian motions@17#. In order
to enumerate all possible nonintersecting paths of walk
realized on a spatiotemporal plane, we use the so-ca
Lindström-Gessel-Viennot formula@18–20#, which leads us
to a useful determinantal expression for the transition pr
ability density of nonintersecting Brownian motions. W
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found that its initial-configuration dependence can be gen
ally described by using the Schur function and the we
known properties of this function enable us to define
nonintersecting Brownian motions in whichall particles
start from a single position. Because the nonintersecting co
dition will be imposed for a given time interval, sayT, all the
particles are immediately disunited from the initial point, a
then they walk randomly keeping the nonintersecting con
tion. We have studied the time dependence of the spa
distribution of particle positions. We report in this paper th
the position distribution ofN nonintersecting Brownian mo
tions can be identified with the distribution of eigenvalues
N3N complex Hermitian matrixH coupled to a real sym-
metric matrixA, in whichH andA are randomly chosen from
the Gaussian ensembles. Such atwo-matrix modelwas stud-
ied by Pandey and Mehta@21,22#, in which one paramete
was introduced to control the coupling strength between
matrices. We will show that the time dependence of our p
cess can be expressed by the parameter dependenc
Pandey-Mehta’s two-matrix model.

Here we consider the probability density function ofN
real variables$x1 ,•••,xN% with a real parameterb>0,

Pb~x1 ,•••,xN!5Ce2b(xj
2/2 )

1< j ,k<N
uxj2xkub

5Cexp@2bW~$xj%!#, ~1!

with

W~$xj%!5
1

2 (
j 51

N

xj
22 (

1< j ,k<N
lnuxj2xku, ~2!

whereC is a normalization constant. It is known that Eq.~1!
with b51, 2, and 4 describe the distributions of eigenvalu
of random matrices in the Gaussian orthogonal, unitary,
symplectic ensembles, respectively~abbreviated as GOE
GUE, and GSE, respectively! @15#. For the one-dimensiona
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N Brownian motions, in which all particles start from th
origin and the nonintersecting condition is imposed in
time interval (0,T#, we will show that~i! at the very early
stage, i.e.,t/T!1, the particle distribution is described b
using GUE,~ii ! as timet is going on, a transition from GUE
to GOE is observed, and~iii ! at the final staget5T the
particle distribution can be identified with GOE. As show
by the second equality of Eq.~1!, the Gaussian ensemble o
random matrices can be regarded as the thermodynam
equilibrium of one-dimensional gas system with~two-
dimensional! Coulomb repulsive potential~2! at the inverse
temperatureb. Here it should be noted that the vicious wal
ers on a lattice have only contact repulsive interactions
satisfy the nonintersecting condition. The global effective
teractions among walkers are accumulated by taking the
fusion scaling limit and as its result a long-ranged Coulo
gas system is constructed. Suchemergence of long-rang
effects in macroscopic scales from systems having only sh
ranged microscopic interactionsis found only at critical
points in thermodynamical equilibrium systems, but it is
typical phenomenon observed in a various interacting p
ticle systems in far from equilibrium.

In particular, in the limitT→`, that is, when the nonin
tersecting condition will be imposed forever, we can deriv
system of stochastic differential equations for the proc
with the drift terms that act as the repulsive two-body forc
proportional to the inverse of distances between particles
other words, the scaling limit of vicious walks withT→`
can realize Dyson’s Brownian motion model atb52 @23#. It
is reasonable to obtain such a stochastic process from
vicious walker model, since it is known that Dyson’s Brow
ian motion model atb52 can be mapped to the free fermio
model @17,24#. The transition from GUE to GOE is, how
ever, first reported for vicious walkers withT,` and ex-
plained using the two-matrix model in the present paper.

II. MODEL AND LINDSTRO¨ M-GESSEL-VIENNOT
DETERMINANT

One-dimensional vicious walks are defined as a subse
simple random walks as follows. Let$Rk

sj%k>0 , j
51,2, . . . ,N, be theN independent symmetric simple ran
dom walks onZ5$•••,22,21,0,1,2•••% started fromN
distinct positions, 2s1,2s2,•••,2sN , sjPZ. That is,

R0
sj52sj , and Rk11

sj 5Rk
sj21 or Rk

sj11,

for j 51,2, . . . ,N,k50,1,2, . . . . Fix thetime intervalK as a
positive even number. The total number of walks is 2NK, all
of which are assumed to be realized with equal probab
22NK. We consider a subset of walks such that any of wa
ers does not meet other walkers up to timeK. In other words,
the condition

Rk
s1,Rk

s2,•••,Rk
sN , k51,2, . . . ,K ~3!

is imposed. Such a subset of walks is called the vicio
walks ~up to timeK) @1,4#. Let NN(K;$ej%u$sj%) be the total
number of the vicious walks, in which theN walkers starting
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from 2s1,2s2,•••,2sN arrive at the positions 2e1,2e2
,•••,2eN at timeK. Then the probability that such viciou
walks with those fixed end points are realized in all possi
random walks started from the given initial positions, whi
is denoted asVN($Rk

sj%k50
K ;RK

sj52ej ), is

VN~$Rk
sj%k50

K ;RK
sj52ej !5

NN~K;$ej%u$sj%!

2NK
.

We also consider the probability

VN~$Rk
sj%k50

K !5 (
e1,e2,•••,eN

VN~$Rk
sj%k50

K ;RK
sj52ej !.

Consider a subset of the square latticeZ2,

LK5$~x,y!PZ2:x1y5even, 0<y<K%,

and the setEK of all edges that connect the nearest-neigh
pairs of vertices inLK . The lattice (LK ,EK) provides the
spatiotemporal plane and each walk of thej th walker, j
51,2,•••,N, can be represented as a sequence of succes
edges connecting verticesSj5(2sj ,0) andEj5(2ej ,K) on
it, which we call thelattice pathrunning fromSj to Ej . If
such lattice paths share a common vertex, they are sai
intersect. Under the vicious walk condition~3!, what we con-
sider is a set of allN tuples ofnonintersecting paths@20#.
Let p(S→E) be the set of all lattice paths fromS to E,
and p0($Sj% j 51

N →$Ej% j 51
N ) be the set of all N-tuples

(p1 ,•••,pN) of nonintersecting lattice paths, in whichp j
runs fromSj to Ej , j 51,2,•••,N. If we write the number of
elements in a setA as uAu, then NN(K;$ej%u$sj%)
5up0($Sj% j 51

N →$Ej% j 51
N )u.

The Lindström-Gessel-Viennot theorem gives@18–20#
~see also@1,6,14#!,

NN~K;$ej%u$sj%!5det1< j ,k<N~ up~Sk→Ej !u!.

Since up(Sk→Ej )u5(K/21sk2ej

K ), we have the following bi-

nomial determinantal expressions:

VN~$Rk
sj%k50

K ;RK
sj52ej !

522NK det1< j ,k<NS S K

K/21sk2ej
D D

~4!

and

VN~$Rk
sj%k50

K !

522NK (
e1,e2,•••,eN

det1< j ,k<NS S K

K/21sk2ej
D D .

~5!

III. SCALING LIMIT OF VICIOUS WALKS

Recently Krattenthaleret al. @3# evaluated the asymptote
of Eq. ~5! for largeK in the two special initial configurations
~i! sj5 j 21 and~ii ! sj52( j 21), as
5-2
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VN~$Rk
sj%k50

K !5aNbN~$sj%!K2N(N21)/4@11O~1/K !#,
~6!

where

aN55 ~2N/p!N/4)
j 51

N/2

~2 j 22!! if N5even

~2N11/p!(N21)/4 )
j 51

(N21)/2

~2 j 21!! if N5odd,

~7!

and

bN~$ j 21%!51, bN@$2~ j 21!%#52N(N21)/2. ~8!

We found that their result can be immediately generaliz
as

bN@$s~ j 21!%#5sN(N21)/2

for sj5s( j 21),s51,2,3,•••. This observation suggests th
we can take the scaling limitL→`, where the time interva
K}L and the initial spacing of walkerss}AL.

A. Schur function

In order to describe the scaling limit of the vicious walk
the symmetric function called the Schur function is usef
Here we give some of the fundamental properties of Sc
function @7–10#, which will be used below.

A partition l5(l1 ,l2 ,•••,lN) is a nonincreasing serie
of nonnegative integers,l1>l2>•••>lN>0. Let V be
the N-dimensional complex vector space. Then the Sc
function sl(z1 ,•••,zN) associated withl is a function of
(z1 ,•••,zN)PV defined by

sl~z1 ,•••,zN!5
det1< j ,k<N~zj

lk1N2k
!

det1< j ,k<N~zj
N2k!

. ~9!

Let Dl($zj%) be the numerator of Eq.~9!, which is anN
3N determinant. If we setzl 1

5zl 2
for 1< l 1, l 2<N, then

Dl($zj%)50, since thel 1th row is equal to thel 2th row.
Then it is divisible by each of the differenceszl 1

2zl 2
,1

< l 1, l 2<N, and hence by their product)1< j ,k<N(zj2zk).
This product of all differences is known as the Vandermon
determinant, which is nothing but the denominator of E
~9!;

D0~$zj%![det1< j ,k<N~zj
N2k!5 )

1< j ,k<N
~zj2zk!. ~10!

Therefore it is concluded that the ratio of two determina
Dl /D0 is a polynomial inz1 ,•••,zN . Moreover, it can be
readily seen from Eq.~9! that the Schur function is a homo
geneous polynomial of degree( j 51

N l j in z1 ,•••,zN .
Let q be a complex variable and setzj5qj 21 in Eq. ~9!.

Then we have
01110
d

,
l.
r

r

e
.

s

sl~1,q,q2,•••,qN21!5
det1< j ,k<N~q( j 21)(lk1N2k)!

det1< j ,k<N~q( j 21)(N2k)!
.

Appropriate application of the formula of Vandermonde d
terminant~10! gives the product form

sl~1,q,q2, . . . ,qN21!5q(( j 21)l j )
1< j ,k<N

ql j 2lk1k2 j21

qk2 j21
.

Taking the limitq→1, we have the formula

sl~1,1, . . . ,1!5 )
1< j ,k<N

l j2lk1k2 j

k2 j
. ~11!

The Schur function is a character of the irreducible repres
tation specified byl of the groupGL(V) and Eq.~11! gives
the dimension of the representation.

B. Diffusion scaling limit

We set

K5Lt, sj5
AL

2
xj , ej5

AL

2
yj , ~12!

for j 51,2,•••,N, and take the limitL→`. Since in this
limit each random walkRk

sj converges to a Brownian motion
whose distribution function solves the diffusion equatio
this scaling limit is especially calleddiffusion scaling limit.
First we remark that, for each strictly increasing series
integersy1,y2,•••,yN , a weakly decreasing series of in
tegersj(y)5„j1(y),•••,jN(y)… can be assigned by setting

j j~y!5yN2 j 112~N2 j !, j 51,2, . . . ,N. ~13!

Then we can prove that, for givent.0, x1,x2,•••,xN ,
andy1,y2,•••,yN ,

lim
L→`

SAL

2 D N

VN~$Rk

ALxj /2%k50
Lt ;RLt

ALxj /25ALyj !

5~2pt !2N/2 det1< j ,k<NFexpS 2
1

2t
~xk2yj !

2D G
5~2pt !2N/2sj(y)~ex1 /t,ex2 /t, . . . ,exN /t!

3expS 2
1

2t (
j 51

N

~xj
21yj

2!D hN~$exj /t%!, ~14!

wheresj(y)(z1 ,•••,zN) is the Schur function associated wit
j(y), defined by Eq.~9! with l5j(y), and

hN~$zj%![det1< j ,k<N~zj
k21!5~21!N(N21)/2D0~$zj%!

5 )
1< j ,k<N

~zk2zj !. ~15!
5-3
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The proof is given as follows. Setting Eq.~12!, we apply
Stirling’s formula to the right-hand side~RHS! of Eq. ~4!
multiplied by (AL/2)N,

lim
L→`

22NLtSAL

2 D N

det1< j ,k<NS S Lt

Lt

2
1

AL~xk2yj !

2
D D

5det1< j ,k<NF lim
L→`

22LtSAL

2 D S Lt

Lt

2
1

AL~xk2yj !

2
D G

5det1< j ,k<NF 1

A2pt
e2(xk2yj )

2/2tG , ~16!

which gives the first equality of Eq.~14!. For the second
equality, we rewrite Eq.~16! as

~2pt !2N/2e2((xj
2
1yj

2)/2t det1< j ,k<N~exkyj /t!.

The determinant is written as

det1< j ,k<N~exkyj /t!5
det1< j ,k<N~~exj /t!yN2k11!

det1< j ,k<N~~exj /t!N2k!

3hN~$exj /t%!.

Using Eq.~13! and the definition of Schur function~9!, the
second equality of Eq.~14! is obtained.

We consider the rescaled one-dimensional latt
Z/(AL/2), where the unit length is 2/AL, and letR̃k

x denote
the symmetric simple random walk starting fromx on
Z/(AL/2). Then Eq.~14! implies that

lim
L→`

VN~$R̃k
xj%k50

Lt ;R̃Lt
xj P@yj ,yj1dyj # !5 f N~ t;$yj%u$xj%!dNy.

Here we can give two expressions forf N(t;$yj%u$xj%),

f N~ t;$yj%u$xj%!5~2pt !2N/2

3det1< j ,k<NFexpS 2
1

2t
~xk2yj !

2D G
5~2pt !2N/2sj(y)~ex1 /t,ex2 /t,•••,exN /t!

3expS 2
1

2t (
j 51

N

~xj
21yj

2!D hN~$exj /t%!.

~17!

Since the vicious walkers are defined by imposing
nonintersecting condition~3! up to a given timeK, the pro-
cess depends on the choice ofK. That is, the process i
temporally inhomogeneous. This feature should be inherite
in the process obtained in the diffusion scaling limit. Sin
each random walk converges to a Brownian motion in
diffusion scaling limit, the limit process of theN vicious
walkers can be called theN nonintersecting Brownian mo
01110
e

e
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tions. Let T.0 and we consider theN nonintersecting
Brownian motions in the time interval (0,T#. Set

NN~ t;$xj%!5E
y1,•••,yN

dNy fN~ t;$yj%u$xj%!.

For 0<s,t<T, x1,•••,xN ,y1,•••,yN , the transi-
tion probability density from the configuration$xj% at times
to $yj% at t is given by

gN
T~s,$xj%;t,$yj%!5

f N~ t2s;$yj%u$xj%!NN~T2t;$yj%!

NN~T2s;$xj%!
,

~18!

since the numerator in RHS gives the nonintersecting pr
ability for (0,T# specified with the configurations$xj% and
$yj% at timess andt, respectively, and the denominator giv
the probability only specified with$xj% at s, where we have
used the Markov property of the process. The temporal
homogeneity is obvious, since RHS depends not onlyt2s
but alsoT2s andT2t.

C. t\` asymptote ofNN„t; ˆxj‰…

It should be noted that, sinceNN(t;$xj%) is the integral of
f N(t;$yj%u$xj%) over all possible end positions$yj%, it is the
probability thatN Brownian motions starting from$xj% do
not intersect up to timet. Before studying the stochastic pro
cess defined by the transition probability density~18!, here
we assumeuxu[( j 51

N uxj u,` and evaluate thet→` asymp-
tote ofNN(t;$xj%). In order to do that, the second expressi
of f N(t;$yj%u$xj%) in ~17! will be useful,

NN~ t;$xj%!5
e2(xj

2/2t

~2pt !N/2
hN~$exj /t%!E

y1,•••,yN

dNy

3sj(y)~ex1 /t,•••,exN /t!e2(yj
2/2t.

By Eq. ~11!, ~13!, and~15!,

lim
t→`

sj(y)~ex1 /t, . . . ,exN /t!5sj(y)~1,1, . . . ,1!

5hN~$yj%!/ )
1< j ,k<N

~k2 j !

and

lim
t→`

tN(N21)/2hN~$exj /t%!5hN~$xj%!.

We define

bN~$xj%!5hN~$xj%!/ )
1< j ,k<N

~k2 j !.

Note that this definition ofbN($x%) is consistent with Eq.~8!.
Then we have
5-4
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NN~ t;$xj%!5t2N2/2
bN~$xj%!

~2p!N/2N!
E dNy e2(yj

2/2tuhN~$yj%!u

3@11O~1/t !#

5t2N(N21)/4
bN~$xj%!

~2p!N/2N!
E dNue2(uj

2/2uhN~$uj%!u

3@11O~1/t !#,

as t tends to infinity, where we have used the facts that w
the absolute values the product of differencesuhN($yj%)u is
invariant under permutation ofyj , anduj5yj /At. The last
integral is the special case (g51/2 anda51/2) of

E dNu e2a(uj
2

)
1< j ,k<N

uuk2uj u2g

5~2p!N/2~2a!2N[g(N21)11]/2)
j 51

N
G~11 j g!

G~11g!
,

~19!

which is found in Mehta@15# @Eq. ~17.6.7! on page 354#,
whose proof was given in@25# by use of Selberg’s integra
@26#. Here G(x) is the Gamma function with the value
) j 51

N G(11 j /2)522N(N21)/2(Ap/2)NN!aN and G(3/2)
5Ap/2 and, whereaN is given by Eq.~7!. Then we have

NN~ t;$xj%!5t2cN222cNaNbN~$xj%!@11O~1/t !# ~20!

with

cN5
1

4
N~N21!, ~21!

as t tends to infinity, wherecN is known as the critical ex-
ponent of survival probability of vicious walkers@1,4,27,28#.
Since

t2cN222cNbN~$xj%!5~Lt !2cNbN~$ALxj /2%!,

~20! suggests that the result~6! with ~7! and ~8! of Krat-
tenthaleret al. shall be generalized for arbitrary initial pos
tions of vicious walkers on the lattice.

IV. GAUSSIAN RANDOM MATRIX ENSEMBLES AND
DYSON’S BROWNIAN MOTIONS

In this section we study two special choices ofT; T5t
and T→`. We show that there is an interesting correspo
dence between these choices ofT and the Gaussian en
sembles of random matrices. In order to see it we cons
the limit uxu→0, whereuxu[( j 51

N uxj u. It will be shown that
the second expression off N(t;$yj%u$xj%) in Eq. ~17! is useful
for taking this limit.
01110
h
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A. TÄt case and GOE

Since the first expression in Eq.~17! gives
limt→0f N(t;$yj%u$xj%)5) j 51

N d(xj2yj ) with Dirac’s d func-
tions,NN(0;$xj%)51 for any$xj%. Then settingT5t makes
~18! depend only ont2s. Sets50 and use the second ex
pression in Eq.~17! for f N(t;$yj%u$xj%) andNN(t;$xj%). By
virtue of the Schur function~11!, for t.0 and uxu!1, we
have

f N~ t;$yj%u$xj%!5~2pt !2N/2hN~$exj /t%!sj(y)~1, . . . ,1!

3e2(yj
2/2t@11O~ uxu!#

5
t2N/2

~2p!N/2
e2(yj

2/2thN~$yj%!

3 )
1< j ,k<N

exk /t2exj /t

k2 j
3@11O~ uxu!#

and

NN~ t;$xj%!5~2pt !2N/2hN~$exj /t%!E
y1,•••,yN

dNy

3sj(y)~1, . . . ,1!e2(yj
2/2t@11O~ uxu!#

5
tN(N21)/4

~2p!N/2cN
)

1< j ,k<N

exk /t2exj /t

k2 j
@11O~ uxu!#,

where the integral~19! was used and

cN5
2N(N22)/2

pN/2aN

5S 2N/2)
j 51

N

G~ j /2!D 21

.

Then Eq.~18! gives

gN
t ~0,$0%;t,$yj%!5cNt2zNe2(yj

2/2thN~$yj%!

for y1,•••,yN with

zN5
1

4
N~N11!.

It means that

gN
t ~0,$0%;t,$yj%!5N!gN

GOE~$yi%;t !

for y1,•••,yN , where

gN
GOE~$yj%;s

2!5
cN

N!
s22zNexpS 2

1

2s2 (
j 51

N

yj
2D hN~$yj%!

~22!

is the probability density function of eigenvalues$yj% of ran-
dom matrices in the Gaussian orthogonal ensemble w
variances2 @15#.
5-5
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B. T\` limit and GUE

Let

pN~s,$xj%;t,$yj%![ lim
T→`

gN
T~s,$xj%;t,$yj%!.

By use of Eq.~20! we can determine the explicit form fo
any initial configurationx1,x2,•••,xN in this case as

pN~0,$xj%;t,$yj%!5
hN~$yj%!

hN~$xj%!
f N~ t;$yj%u$xj%!, ~23!

wherehN is given by Eq.~15!. Moreover, if we take the limit
uxu→0, we have

pN~0,$0%;t,$yj%!5cN8 t2zN8 e2(yj
2/2thN~$yj%!2, ~24!

with

zN8 5
N2

2
and cN8 5S ~2p!N/2)

j 51

N

G~ j !D 21

.

That is, we have the identity

pN~0,$0%;t,$yj%!5N!gN
GUE~$yi%;t !,

for y1,•••,yN , where

gN
GUE~$yj%;s

2!5
cN8

N!
s22zN8 expS 2

1

2s2 (
j 51

N

yj
2D hN~$yj%!2

~25!

is the probability density function of eigenvalues$yj% of ran-
dom matrices in the Gaussian unitary ensemble with v
ances2 @15#.

In the caseT→`, the nonintersecting condition will be
imposed forever, while in the caseT5t, there will be no
condition in the future.The distributions of particles a
present depend on the condition in the future.

By generalizing the calculation, which we did in the ca
T5t, for arbitraryT and comparing the result with Eq.~24!,
we have

gN
T~0,$0%;t,$yj%!

pN~0,$0%;t,$yj%!
5 c̄NTcN

NN~T2t;$yj%!

hN~$yj%!
~26!

for y1,•••,yN , with Eq. ~21! and

c̄N5
cN

cN8
5pN/2)

j 51

N
G~ j !

G~ j /2!
.

WhenN52, we can consider the process of one variably
5y22y1. In this caseg2

T andp2 define theBrownian mean-
der and theBessel process, respectively, both of which are
stochastic processes well studied in probability theory@29#.
The equality~26! can be regarded as the multivariable ge
eralization of Imhof’s relation@30# between the Brownian
meander and the Bessel process.
01110
i-
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C. Dyson’s Brownian motions

In the limit T→` we have obtained the compact expre
sion ~23! for any x1,•••,xN and y1,•••,yN . In this
section, we show that a system of stochastic differen
equations can be explicitly derived for Eq.~23!. Using it we
will explain why we have the GUE distribution.

Let

Ek~$xj%!5 (
j 51; j 5” k

N
1

xk2xj
for k51,2, . . .N.

It is easy to verify that

Ek~$xj%!5
]

]xk
ln hN~$xj%!, ~27!

for k51,2, . . . ,N, and

(
k51

N F ]

]xk
Ek~$xj%!1@Ek~$xj%!#2G50. ~28!

Using these equalities, we can prove thatpN(0,$xj%;t,$yj%)
solves the equation

]

]t
u~ t;$xj%!5

1

2
Du~ t;$xj%!1 (

k51

N

Ek~$xj%!
]

]xk
u~ t;$xj%!,

~29!

whereD5(k51
N ]2/]xk

2 . The proof is the following. First we
remark that the first expression in Eq.~17! states thatf N is a
finite summation of the products of Gaussian kernels a
thus it satisfies the diffusion equation@31#. Therefore,

]

]t
pN~0,$xj%;t,$yj%!5

1

2

hN~$yj%!

hN~$xj%!
D f N~ t;$yj%u$xj%!.

Then we can find that, if$Ek($xj%)% satisfy the equations

(
k51

N

Ek~$xj%!
1

hN~$xj%!

]

]xk
f N~ t;$yj%u$xj%!

52 (
k51

N H ]

]xk

1

hN~$xj%!J H ]

]xk
f N~ t;$yj%u$xj%!J

~30!

and

(
k51

N

Ek~$xj%!
]

]xk

1

hN~$xj%!
52

1

2 (
k51

N
]2

]xk
2

1

hN~$xj%!
,

~31!

Equation~29! holds withu(t;$xj%)5pN(0,$xj%;t,$yj%). It is
easy to see that Eq.~30! is satisfied if Eq.~27! holds for any
k51,2, . . . ,N. Moreover, using Eq.~27!, we can reduce Eq
~31! to Eq. ~28!. Then the proof is completed.

The above result implies that the process defined in
limit T→` is the system ofN particles with positions
5-6
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x1(t),x2(t),•••,xN(t) at time t on the real axis, whose tim
evolution is governed by the stochastic differential equati

dxk~ t !5Ek~$xj~ t !%!dt1dBk~ t !, ~32!

k51,2,•••,N, where $Bk(t)%k51
N are the independent stan

dard Brownian motions

Bj~0!50, ^Bj~ t !&50,

^@Bj~ t !2Bj~s!#@Bk~ t !2Bk~s!#&5ut2sud jk

for any t,s.0,j ,k51,2, . . . ,N. Because of the scaling prop
erty of Brownian motion,AaBj (t) is equal toBj (at) in dis-
tribution for arbitrarya.0. Then, if we sett52t8 and write
xk(t)5 x̃k(t8), Eq. ~32! is the a50,b52 case of the equa
tions,

dx̃k~ t8!52b
]

] x̃k

Wa@$x̃ j~ t8!%#dt81A2dBk~ t8!, ~33!

k51,2, . . . ,N, with

Wa~$x̃ j%!5a(
j 51

n x̃j
2

2
2 (

1< j ,k<n
ln~ x̃k2 x̃ j !.

Whena51, Eq. ~33! is known as the stochastic differenti
equations for the Dyson Brownian motions at the inve
temperature b and the stationary distribution
}exp@2bW1($x̃j%)# @23#. If a50, the factor exp(2ba(x̃j

2/2)

will be replaced by exp(2(x̃j
2/4t8) for finite t8 and thus

when t85s2/b we may have the Gaussian distributio
}exp@2(b/4s2)( x̃ j

2#hN($x̃ j%)
b. Settingb52 gives the form

~25!.
It should be noted that the system of diffusion equatio

describing the Dyson Brownian motions withb52 can be
mapped to the free fermion model@17,24#.

For generalT,`, we will have the stochastic differentia
equations

dxk~ t !5Ek
T~$xj~ t !%!dt1dBk~ t !,

for k51,2, . . . ,N, with

Ek
T~$xj%!5

]

]xk
ln NN~T2t;$xj%!.

V. TWO-MATRIX MODEL

In Sec. III we have constructed a system of noninterse
ing Brownian motions in one dimension as the diffusi
scaling limit of vicious walks. The obtained transition pro
ability density ~18! is temporally inhomogeneous and th
particle distribution depends not only the observation ti
t2s but also on the time intervalT, in which nonintersecting
condition is imposed. In the case that all particles start fr
the origin at times50, it was shown in Sec. IV that,~i! if
T5t, it can be identified with the eigenvalue distribution
random matrices in GOE, and~ii ! if T→`, it becomes GUE.
01110
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For a fixedT,`, the above results are summarized
follows. Consider the one-dimensionalN Brownian motions
all starting from the origin at timet50. We impose the non-
intersecting condition for the time interval (0,T#. As the ratio
t/T→0, the particle distribution is asymptotically describe
by GUE. On the other hand, att5T, it can be identified with
GOE. This implies that as timet is going on from 0 toT,
there occurs a transition of distribution from GUE to GO
In this section, we study this transition.

GUE is the ensemble of complex Hermitian matrices a
GOE is that of real symmetric matrices. The degrees of fr
dom are, when the matrix sizes areN, N2 and N(N11)/2,
respectively. If we change the variables from these indep
dent matrix elements to the eigenvalues and other mutu
independent variables, and then if we integrate the distri
tion functions over all variables other than eigenvalues,
will have the probability density functions forN real eigen-
values as Eqs.~25! and ~22! @15#.

Although the vicious walker model has no matrix stru
ture at all, here we show that its diffusion scaling limit, no
intersecting Brownian motions, can be regarded as the re
tion of a one-parameter family of ensembles of mat
structures to a variable space of eigenvalues. The ‘‘hid
structure’’ is not a single matrix but a two-matrix model,
which a complex Hermitian matrix is coupled with a re
symmetric matrix.

In the first section we will derive the two-matrix mode
from the nonintersecting Brownian motions and the tran
tion from GUE to GOE will be discussed in the second s
tion. In the third section we will show that the obtained tw
matrix model can be identified with the two-matrix model
Pandey and Mehta@21,22# by appropriate scale transforma
tion of matrix elements.

A. From vicious walker model to two-matrix model

The generalized Imhof relation~26! with Eq. ~24! gives

gN
T~0,$0%;t,$yj%!}e2(yj

2/2thN~$yj%!E dNz sgn@hN~$zj%!#

3det1< j ,k<NFexpS 2
1

2~T2t !
~yj2zk!

2D G , ~34!

where sgn(x)5x/uxu. The RHS is rewritten as

hN~$yj%!E dNz sgn@hN~$zj%!#det1< j ,k<NFexpS 2
1

2t
yj

2

2
1

2~T2t !
~yj2zk!

2D G
5hN~$yj%!E dNz sgn@hN~$zj%!#e2(zj

2/2T

3det1< j ,k<NFexpS 2
T

2t~T2t ! S yj2
t

T
zkD 2D G .

Setting (t/T)zj5aj , j 51,2, . . . ,N, we have
5-7
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gN
T~0,$0%;t,$yj%!}hN~$yj%!E dNa sgn@hN~$aj%!#

3expS 2
T

2t2 (
j 51

N

aj
2D

3det1< j ,k<NFexpS 2
T

2t~T2t !
~yj2ak!

2D G . ~35!

Consider an ensemble ofN3N real symmetric matrices$A%
with an integration measure

dA[ )
1< j <k<N

dAjk .

Let $a1 ,a2 ,•••,aN% be the eigenvalues of the matrixA and
$p1 ,p2 ,•••,pN(N21)/2% be other mutually independent var
ables. Then

dA5J~$aj%,$pj%!)
j 51

N

daj )
k51

N(N21)/2

dpk ,

whereJ($aj%,$pj%) is the Jacobian

J~$aj%,$pj%!5U ]~A11,A12, . . . ,ANN!

]~a1 , . . . ,aN ,p1 , . . . ,pN(N21)/2!
U.

It is known that we can write

J~$aj%,$pk%!5uhN~$aj%!u f ~$pk%!,

wheref ($pk%) is independent ofaj ’s @15#. Therefore, for any
function G($aj%) of $a1 , . . . ,aN%, we have the identity

E dA G~$aj%!5cE )
j 51

N

daj uhN~$aj%!uG~$aj%! ~36!

with

c5E )
k51

N(N21)/2

dpkf ~$pj%!.

Set

G~$aj%!5
1

uhN~$aj%!u
sgn@hN~$aj%!#expS 2

T

2t2 (
j 51

N

aj
2D

3det1< j ,k<NFexpS 2
T

2t~T2t !
~yj2ak!

2D G .
Then using formula~36!, ~35! becomes
01110
gN
T~0,$0%;t,$yj%!}hN~$yj%!E dA

1

hN~$aj%!

3expS 2
T

2t2 (
j 51

N

aj
2D

3det1< j ,k<NFexpS 2
T

2t~T2t !
~yj2ak!

2D G .
~37!

Next we use the following integral formula@32–34#; for
N3N Hermitian matricesA and B having eigenvalues
$a1 , . . . ,aN% and $b1 , . . . ,bN%, respectively, and for any
constantg,

E dU exp@g tr~A2U†BU!2#}
1

hN~$aj%!hN~$bj%!

3det1< j ,k<N@exp~g~aj2bk!
2!#,

where the integral is taken over the group of unitary matri
U. Then Eq.~37! can be written as

gN
T~0,$0%;t,$yj%!}hN~$yj%!2E dUE dA expS 2

T

2t2
tr A2D

3expS 2
T

2t~T2t !
tr~U†YU2A!2D , ~38!

whereY is theN3N diagonal matrix such thatYjk5yjd jk .
SinceU is a unitary matrix,H5U†YU is anN3N complex
Hermitian matrix. Then the integrand of Eq.~38! can be
regarded as a weight for two matricesH andA given as

exp@2tr~gHH22gHAHA1gAA2!#

with

gH5
T

2t~T2t !
, gHA5

T

t~T2t !
, gA5

T2

2t2~T2t !
.

~39!

Consider an ensemble ofN3N complex Hermitian ma-
trices $H% with the integration measure

dH5 )
1< j <k<N

dRe~H jk! )
1< j ,k<N

dIm~H jk!.

For each complex Hermitian matrixH, let $y1 , . . . ,yN% be a
set of eigenvalues andU be theN3N unitary matrix such
that H5U†YU with Yjk5yjd jk . Then it is known that the
integration measuredH can be factorized into the product o
the Haar measure for unitary matricesdU and an integration
measure for eigenvalues@15,16#,

dH}dU3hN~$yj%!2)
j 51

N

dyj .
5-8
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Now we introduce a two-matrix model, which consists of
N3N real symmetric matrixA and anN3N complex Her-
mitian matrixH, with a probability density function

mN~H,A!5
1

ZN
exp~2tr@gHH22gHAHA1gAA2!#.

HeregH ,gHA ,gA are given as Eq.~39! andZN is the parti-
tion function of the two-matrix model,

ZN5E dHE dA exp@2tr~gHH22gHAHA1gAA2!#.

Then the relation

gN
T~0,$0%;t,$yj%!}hN~$yj%!2E dUE dAmN~U†YU,A!

is established.

B. Transition from GUE to GOE

Consider the Gaussian ensembles of real symmetric
trices $A% and complex Hermitian matrices$H% with sizesN
with the probability density functions

nN~A!5CA expS 2
1

2sA
2

tr A2D
and

ñN~H !5CH expS 2
1

2sH
2

tr H2D ,

respectively, where

sA
25

t2

T
, sH

2 5tS 12
t

TD ,

and CA522N/2(psA
2)2zN, CH522N/2(psH

2 )2zN8 . Then
consider the convolution

m̂N~H !5E dAnN~A!ñN~H2A!.

Since, for 1< j ,k<N,

H jk5Re~H jk!1 i Im~H jk!

with i 5A21, and

Re~Ajk!5Ajk , Im~Ajk!50,

the convolution is also Gaussian distribution in the form

m̂N~H !}expS 2(
j ,k

H @Re~H jk!#2

2~sH
2 1sA

2 !
1

@ Im~H jk!#2

2sH
2 J D .

Then Eq.~38! gives
01110
a-

gN
T~0,$0%;t,$yj%!}hN~$yj%!2E dUm̂N~H !

}hN~$yj%!2E dU expS 2(
j ,k

H @Re~H jk!#2

2sRe
2

1
@ Im~H jk!#2

2s Im
2 J D , ~40!

whereH5U†YU and

sRe
2 5t, s Im

2 5tS 12
t

TD . ~41!

Now the transition from GUE to GOE is explicitly repre
sented by the time-dependent variances~41!. With a fixed
finite T, if 0,t!T, sRe

2 5t.s Im
2 . Then the real and imagi

nary parts of complex Hermitian matrix elements are equa
distributed as in GUE. WhilesRe

2 increases linearly int, s Im
2

increases in timet only up to timet5T/2 and then decrease
in time. At time t5T, s Im

2 50, which implies that the
imaginary parts of matrix elements are zeros with probabi
one. Then the distribution is identified with GOE.

C. Pandey-Mehta’s two-matrix model

As an interpolation between GUE and GOE, Pandey a
Mehta introduced a family of Gaussian ensembles of Herm
ian matrices$H% with one parameteraP@0,1# @21,22#,

mN
PM~H,a!5CPM expS 2(

j ,k
H @Re~H jk!#2

4v2

1
@ Im~H jk!#2

4v2a2 J D , ~42!

where

v25$2~11a2!%21

and

CPM522N/2a2N(N21)/2~2pv2!2N2/2.

Set

k5At~2T2t !

T
. ~43!

Then, it is easy to see that, if

a2512
t

T
, ~44!

the equality

kNm̂N~kH !5mN
PM~H,a! ~45!
5-9
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is established.
For an even integerN and an antisymmetricN3N matrix

B5(bjk) we put

Pf1< j ,k<N~bjk!5
1

~N/2!! (
s

sgn~s!bs(1)s(2)

3bs(3)s(4) . . . bs(N21)s(N) ,

where the summation is extended over all permutationss of
(1,2, . . . ,N) with restriction s(2k21),s(2k), k
51,2, . . . ,N/2. This expression is known as thePfaffian@20#.
Pandey and Mehta showed that the probability density fu
tion of eigenvalues$yj% of the complex Hermitian matrices
which are distributed following Eq.~42!, is given by

gN
PM~$yj%,a!5CN~a!expF2

1

2
~11a2!(

j 51

N

yj
2G

3hN~$yj%!Pf1< j ,k<N~F jk!, ~46!

where, setting

f ~x![S 12a4

pa2 D 1/2E
0

x

expS 2
12a4

4a2
y2D dy,

if N is even,F jk5 f (yj2yk), j ,k51,2, . . . ,N, and if N is
odd, we use above and in additionF j ,N1152FN11,j51,
j 51,2, . . . ,N,FN11,N1150, and CN(a)21523N/2(1
2a2)N(N21)/4(11a2)2N(N11)/4) j 51

N G(11 j /2) @21,22#.
Then the relation~40! and the equality~45! with ~43! and
~44! imply the expression

gN
T~0,$0%;t,$yj%!5cNTN(N21)/4t2N2/2hN~$yj%!

3expS 2
1

2t (
j 51

N

yj
2D

3Pf1< j ,k<N̂@ F̃ jk~T2t,$yl%!#, ~47!

where

N̂5H N if N is even

N11 if N is odd,

and

F̃ jk~ t,$yl%!55
2

Ap
ErfS yk2yj

2At
D if 1< j ,k<N

1 if 1< j <N,k5N11

21 if j 5N11,1<k<N

0 if j 5k5N11,

with

Erf~x!5E
0

x

due2u2
.

01110
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In order to derive Eq.~46!, Pandey and Mehta performe
integration over alternative variables and then used
theory of Pfaffian@15,21,22#. In Appendix, we will give the
integration versionof Okada’s minor-summation formula
@35#. It should be noted that using it Eq.~47! can be readily
obtained from Eq.~34! and this derivation provides anothe
proof of the equality~45!.

VI. CONCLUDING REMARKS

In the present paper we performed the diffusion scal
limit of vicious walker model in one dimension and co
structed the nonintersecting Brownian motions for any fin
numberN of particles all starting from the origin. There th
Schur function plays an important role to represent the tr
sition probability density. We have shown that the spa
distribution of particles depends not only the observat
time t but also on the time intervalT in which the noninter-
secting condition is imposed, and it can be described by
of the probability density function of eigenvalues ofN3N
random matrices in Gaussian ensembles. It was shown
the particle distribution depends on the ratiot/T and a tran-
sition from GUE distribution to GOE distribution occurs i
its time development. Such a transition between differ
ensembles of random matrices had been studied in the
matrix model by Pandey and Mehta, in which a parametea
was introduced and a one-parameter family of random m
trix ensembles was considered. The present work sho
that the scaling limit of vicious walk model realizes such
two-matrix model as a stochastic process, in such a way
the parametera is continuously changed following Eq.~44!
as the system is developing in timet up to T.

In the present paper, since we have considered only
transition probability density between two different times
two-matrix model was analyzed. As briefly reported in@36#,
however, multitime correlations among particles at interm
diate times betweent50 and t5T can be identified with
intermatrix correlations in a multimatrix model. The corr
sponding multimatrix model for calculatingM-intermediate-
time correlation functions is a version of Nagao’s (M11)
matrix model, where one real symmetric matrix is combin
at the end of a chain ofM complex Hermitian matrices@37#.
This observation implies that the diffusion scaling limit
the vicious walker model is mathematically identified with
matrix chain, which is set along the time axis. The tim
development from GUE to GOE in the process can be t
regarded as appearance of anedge effect, as the observation
time t on the time axis is approaching to the end point
5T in this chain structure. Further study on the relatio
between multimatrix models and nonequilibrium interacti
particle systems is desired.
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APPENDIX: INTEGRATION VERSION OF OKADA’S
MINOR-SUMMATION FORMULA

Assume 1<n<m and let z( j ,k),1< j <n,1<k<m, be
indeterminates andZ(z( j ,k)) be the n3m matrix with
( j ,k)-elementz( j ,k). We consider the sum of all minors ofZ
with a given sizer. That is, we define
la
ea

01110
d~a1 , . . . ,ar !5 (
1<b1,b2,•••,br<m

det1< j ,k<r@z~aj ,bk!#

for r 51,2, . . . ,m. Okada proved the following equalitie
known as theminor-summation formula@35#; if r is odd,
then
d~a1 , . . . ,ar !5PfS 0 d~a1! d~a2! ••• d~ar !

2d~a1! 0 d~a1 ,a2! ••• d~a1 ,ar !

2d~a2! 2d~a1 ,a2! 0 ••• d~a2 ,ar !

•••

2d~ar ! 2d~a1 ,ar ! 2d~a2 ,ar ! ••• 0

D ;

if r is even, then

d~a1 ,•••,ar !5PfS 0 d~a1 ,a2! d~a1 ,a3! ••• d~a1 ,ar !

2d~a1 ,a2! 0 d~a2 ,a3! ••• d~a2 ,ar !

2d~a1 ,a3! 2d~a2 ,a3! 0 ••• d~a3 ,ar !

•••

2d~a1 ,ar ! 2d~a2 ,ar ! 2d~a3 ,ar ! ••• 0

D .
-

an
Now we give the integration version of Okada’s formu
Let z(x,y) be a square integrable continuous function of r
variablesx,y. Then

E
2`,y1,•••,yn,`

dnydet1< j ,k<n@z~xj ,yk!#

5Pf1< j ,k<n̂@F jk~$xl%!#, ~A1!

where

n̂5H n if n is even

n11 if n is odd,

and

F jk~$xl%!55
I z~xj ,xk! if 1< j ,k<n

2I z~xj ,xk! if 1<k, j <n

I z~xj ! if 1< j <n,k5n11

2I z~xk! if j 5n11,1<k<n

0 if 1< j 5k<n11,

with

I z~xj !5E
2`

`

z~xj ,y!dy,

I z~xj ,xk!5E
2`,y1,y2,`

Uz~xj ,y1! z~xj ,y2!

z~xk ,y1! z~xk ,y2!
Udy1dy2 .
.
l

The proof is the following. We write the integral in left
hand side of Eq.~A1! as a limit of summation

E
2`,y1,•••,yn,`

dnydet1< j ,k<n@z~xj ,yk!#

5 lim
M→`

E
2M /2<y1,•••,yn<M /2

dnydet1< j ,k<n@z~xj ,yk!#

5 lim
M→`

lim
d→0

dn (
1<b1,•••,bN<m(M ,d)

det1< j ,k<n$z@xj ,ŷ~bk!#%,

wherem(M ,d)5@M /d#, the greatest integer not greater th
M /d, and

ŷ~b!5
M2d

m~M ,d!21
b2H M2d

m~M ,d!21
1

M

2 J .

Let

d̃~xj !5 (
1<b1<m(M ,d)

z@xj ,ŷ~b1!#,

d̃~xj ,xk!5 (
1<b1,b2<m(M ,d)

Uz@xj ,ŷ~b1!# z@xj ,ŷ~b2!#

z@xk ,ŷ~b1!# z@xk ,ŷ~b2!#
U ,

and set
5-11
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Sjk~$xl%!55
d̃~xj ,xk! if 1< j ,k<n

2d̃~xj ,xk! if 1<k, j <n

d̃~xj ! if 1< j <n,k5n11

2d̃~xj ! if j 5n11,1<k<n

0 if 1< j 5k<n11.

Then Okada’s formula gives

E
2`,y1,•••,yn,`

dnydet1< j ,k<n@z~xj ,yk!#

5 lim
M→`

lim
d→0

dnPf1< j ,k<n̂@Sjk~$xl%!#. ~A2!

Since the Pfaffian in Eq.~A2! is a finite summation ofn/2
products ofd̃(xj ,xk)’s if n is even, and it is a finite summa
tion of (n21)/2 products ofd̃(xj ,xk)’s multiplied by d̃(xl)
if n is odd, we may have

E
2`,y1,•••,yn,`

dny det1< j ,k<n@z~xj ,yk!#

5Pf1< j ,k<n̂~ lim
M→`

lim
d→0

da( j ,k) Sjk~$xl%!!,
. A

. A

s

,

r,

A

ia

01110
where

a~ j ,k!52 for 1< j ,k<n,

a~ j ,n11!51 for 1< j <n.

Sincez(x,y) is assumed to be square integrable and conti
ous,

lim
M→`

lim
d→0

dSjn11~$xl%!5I z~xj !,

lim
M→`

lim
d→0

d2Sjk~$xl%!5I z~xj ,xk!,

for 1< j ,k<n. Then the proof is completed.
By elementary calculation we can show that

I z~x!51,

I z~x,y!5
2

Ap
ErfS y2x

2At
D

for z(x,y)51/A2pte2(x2y)2/2t. Applying Eq. ~A1! with n
5N, the expression~47! is obtained from Eq.~34!.
t
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